

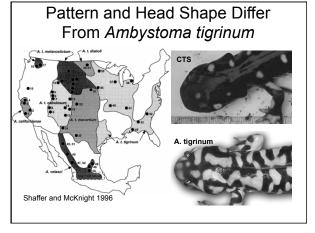
Workshop Topics

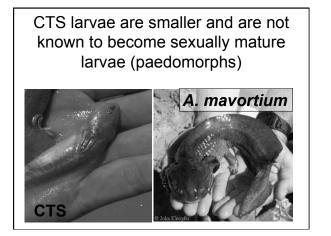
- 1) How is the CTS different from other tiger salamanders?
- 2) Where does it occur and what limits its distribution?
- 3) Why has it declined and what are the greatest threats?
- 4) How to identify the different stages in the CTS life cycle.
- 5) Life history, demography, and population dynamics.
- 6) Ecology: habitat attributes, prey, and predators.
- 7) Movements, metapopulations, and landscapes.
- 8) Strategies for avoidance, minimization, conservation, and recovery
- 9) Survey methods, requirements, and strategies

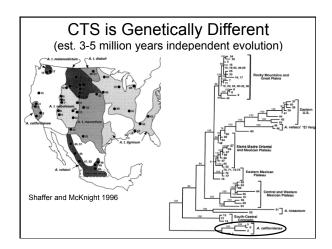
Key Facts for Understanding CTS

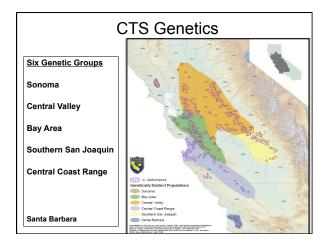
- Breed in ponds develop as aquatic larvae – ponds must hold water until at least May
- Larger ponds are better (but not permanent ponds)
- · The CTS is primarily a terrestrial beast
 - live in small mammal burrows
 - observed to move >1.5 km overland
- Large areas of <u>contiguous or interconnected habitat</u> is what's needed for its conservation
 - CTS coexist with certain human land uses
 - Habitat loss (and hybridization) are the main threats

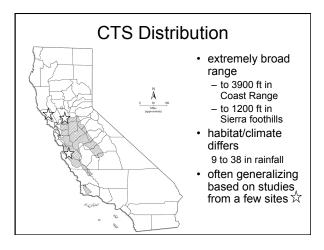
Getting your own permit

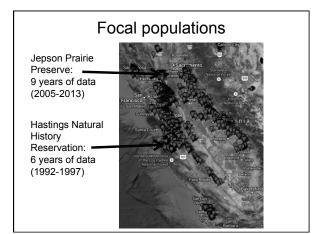

- Start early! It will likely take a year (or more)

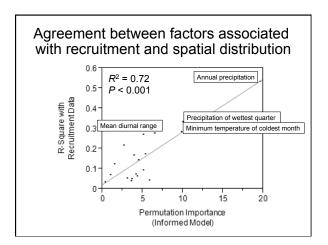

 talk to agency representatives throughout process
- FWS requirements
 - B.S. in biology (or equivalent experience)
 - Course work in herpetology (or eq. exp.)
 - Study/survey design experience (5 surveys/40 hrs)
 - Handling experience (>25, including >5 larvae)
 - Familiarity with habitats
 - Familiarity with co-occurring amphibians
 - Ability to identify vegetative components of habitat

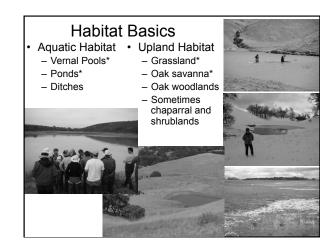

What is a CTS

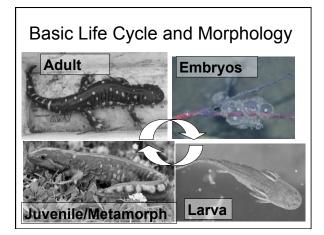

- Amphibian
- aquatic eggs, thin scaleless skin
- Salamander
 four legs and a tail
- Mole salamander
 Family Ambystomatidae
- Tiger salamander
- large terrestrial salamanders and the only group to <u>occupy grasslands</u>
- Ambystoma californiense

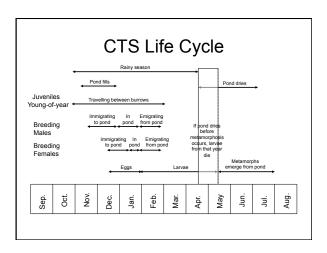


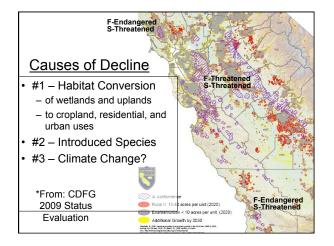


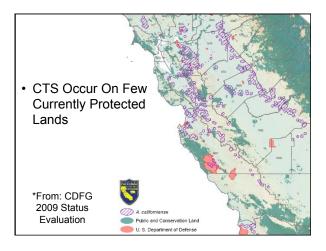


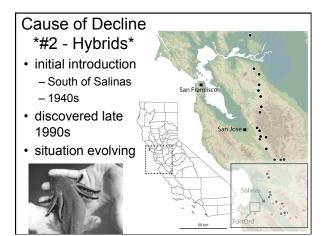


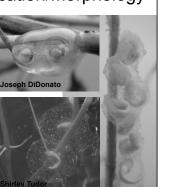


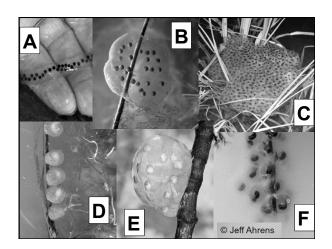



Clin	Climatic factors significantly correlated							
	with recruitment							
	Bioclim variable Sign R ²							
	Annual precipitation	+	0.53					
	Precipitation wettest quarter	+	0.33					
	Minimum temperature of coldest month	+	0.28					
	Mean diurnal range	-	0.28					
	Precipitation wettest month	+	0.27					
	Precipitation coldest quarter	+	0.22					
	Searcy, C. A. & H. B. Shaffer 2016. The American Naturalist.							





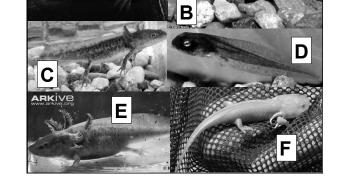



Introductory Main Points

- · CTS habitat and range
 - Breed in ponds
 - Upland habitat with grasslands
 - From Yolo Co. to Santa Barbara Co. in areas with appropriate climate
- Annual cycle driven by rainfall and pond drying
- · Key threats/reasons for listing
 - Habitat loss
 - Hybridization

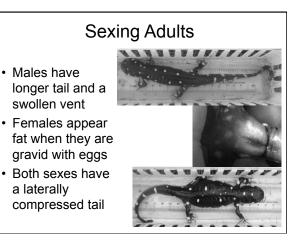
Embryo Identification/Morphology

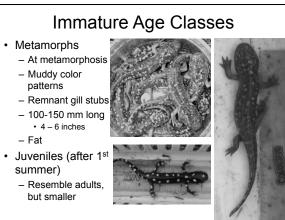

- 2-3 mm diameter
- whitish to grey to yellow
- w/jelly 4.5-10 mm
- attached to vegetation or other materials
- singly or small clusters
- grape-like (each in its own separate membrane)
- Detectable mainly Dec-Feb

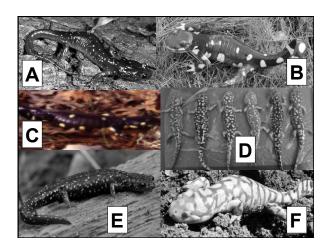


Larvae - Identification/Morphology

- Fish-like
- · Feathery external gills
- Four legs
- 30 to 150 mm
 1 to 6 inches
- Color variable
- No stripes or real pattern
- Potentially detectable year-round (mainly March-June)




Adult Identification/Morphology

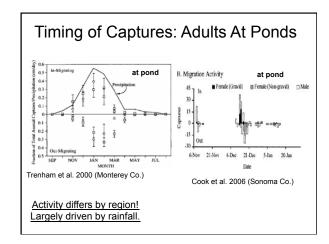


6-10 inches long

- NO nasolabial groove
- black to light brown background
- white to light yellow
- rounded spots - size/amount of spots varies
- toes pointed – NOT squared

Hybrids

- Genetic test needed for conclusive ID
 Adults with barring are suspicious
 - Giant larvae are suspect also (CTS larvae usually <6" total length)



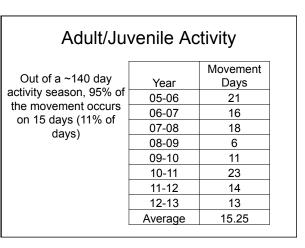
Identification – Main Points

- Embryos are distinctive and detectable – Single embryos alone or in clumps
- Larvae are easily differentiated from newt larvae by larger size and no eye stripe
- Metamorphs have muddy/blotchy color
 Often with remnants of gills/fins
- · Juveniles and adults
 - Black/brown background with cream/yellow spots
 - Lack nasolabial groove, pointed toe tips
- Hybrid/Natives?
 - Genetic test required for conclusive ID
 - Large size and odd color patterns suggest hybrid

Group Exercise 1 - Identification

- In a group of 3-4 discuss the different stages of *A. californiense* and how you would identify them.
- What other amphibians might you encounter in the same ponds?
 - What species could cause problems?
 - In what regions do these species occur?

Adult/juvenile movement period					
	Year	Start	End		
	05-06	29-Nov	27-Feb		
Positively	06-07	14-Nov	22-Feb		
correlated with date at which annual precipitation reaches 0.56 in. (Jepson Data)	07-08	11-Nov	20-Feb		
	08-09	2-Nov	2-Mar		
	09-10	14-Oct	24-Feb		
	10-11	24-Oct	2-Mar		
	11-12	11-Oct	15-Mar		
(Jepson Dala)	12-13	17-Nov	20-Mar		
	Overall	30-Oct	28-Feb		

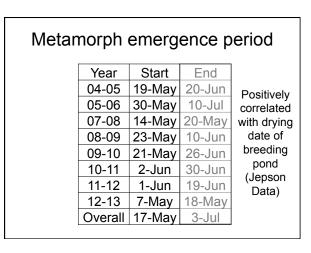

Adult/juvenile movement period

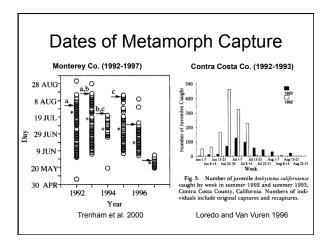
Positively correlated with Nov. rainfall, negatively correlated with Feb. rainfall (Jepson Data)

Year	Start	End
05-06	29-Nov	27-Feb
06-07	14-Nov	22-Feb
07-08	11-Nov	20-Feb
08-09	2-Nov	2-Mar
09-10	14-Oct	24-Feb
10-11	24-Oct	2-Mar
11-12	11-Oct	15-Mar
12-13	17-Nov	20-Mar
Overall	30-Oct	28-Feb

Weather Patterns

- 1) Even during migratory periods, CTS are active on the surface for a small fraction of the days.
- 2) Surface activity is driven by weather.




Correlations

- Movement days are correlated with:
 - Precipitation (+)
 - High minimum temperature (+)
 - Humidity (+)
- However, amongst nights when rain is predicted (~32 per year), there is no clear rule for when CTS will be active

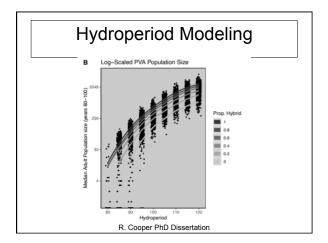
Metamorph emergence period

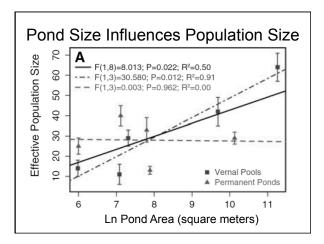
Positively correlated with Mar. rainfall (Jepson Data) 04-05 19-May 20-Jun 04-05 19-May 20-Jun 05-06 30-May 10-Jul 07-08 14-May 20-May 08-09 23-May 10-Jun 09-10 21-May 26-Jun 10-11 2-Jun 30-Jun 11-12 1-Jun 19-Jun 12-13 7-May 18-May Overall 17-May 3-Jul		Year	Start	End
with Mar. rainfall (Jepson Data) 05-06 30-May 10-Jul 07-08 14-May 20-May 08-09 23-May 10-Jun 09-10 21-May 26-Jun 10-11 2-Jun 30-Jun 11-12 1-Jun 19-Jun 12-13 7-May 18-May			19-May	-
rainfall (Jepson Data) 07-08 14-May 20-May 08-09 23-May 10-Jun 09-10 21-May 26-Jun 10-11 2-Jun 30-Jun 11-12 1-Jun 19-Jun 12-13 7-May 18-May		05-06	30-May	10-Jul
Data) 09-10 21-May 26-Jun 10-11 2-Jun 30-Jun 11-12 1-Jun 19-Jun 12-13 7-May 18-May		07-08	14-May	20-May
10-11 2-Jun 30-Jun 11-12 1-Jun 19-Jun 12-13 7-May 18-May	(Jepson	08-09	23-May	10-Jun
11-121-Jun19-Jun12-137-May18-May	Data)	09-10	21-May	26-Jun
12-13 7-May 18-May		10-11	2-Jun	30-Jun
		11-12	1-Jun	19-Jun
Overall 17-May 3-Jul		12-13	7-May	18-May
		Overall	17-May	3-Jul

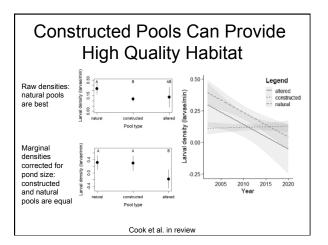
Conclusions – To Avoid Migrating Salamanders

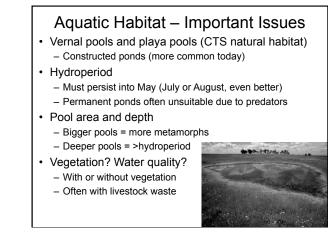
Avoid activities that will impede salamander movement in the terrestrial environment:

- a) after the first ~0.5 inches of rain in the fall until mid-March
- b) from mid-May until the breeding ponds are dry

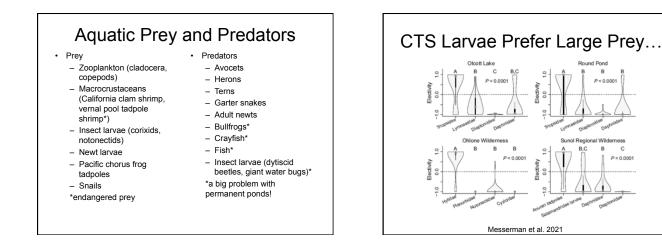

Breeding pond occupancy				
	Year	Start	End	
Positively	05-06	2-Dec	5-Jul	
correlated	06-07	14-Nov	25-Feb	
with first 0.82 in. after the end of October (Jepson Data)	07-08	11-Nov	17-May	
	08-09	2-Nov	9-Jun	
	09-10	12-Dec	25-Jun	
	10-11	21-Nov	29-Jun	
	11-12	15-Dec	18-Jun	
	12-13	17-Nov	17-May	
	Overall	11-Nov	29-Jun	

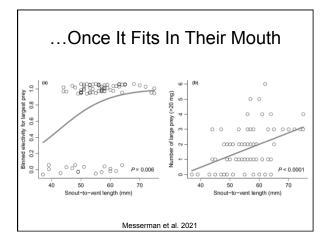

Breeding pond occupancy

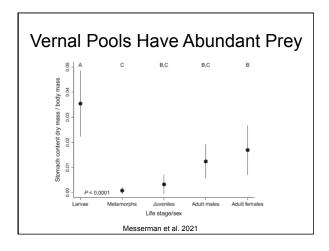

Year	Start	End	
05-06	2-Dec	5-Jul	
06-07	14-Nov	25-Feb	Desitives
07-08	11-Nov	17-May	Positively correlated with
08-09	2-Nov	9-Jun	drying date of
09-10	12-Dec	25-Jun	breeding pond (Jepson Data)
10-11	21-Nov	29-Jun	
11-12	15-Dec	18-Jun	
12-13	17-Nov	17-May	
Overall	11-Nov	29-Jun	

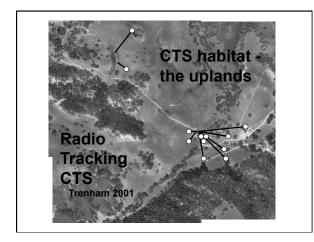

Conclusions – Avoiding in Ponds Avoid activities in the aquatic habitat: -Once ~0.8 in. have accumulated after the end of October -Until the pond has dried for natural vernal pools or until late dry season for artificial ponds

Relationship to Hydroperiod Average Average Date of Average Breeding Metamorph Number of Days in Pond Year Date Emergence 05-06 22-Dec 19-Jun 178 07-08 5-Jan 16-May 131 106 08-09 14-Feb 31-May 09-10 21-Jan 6-Jun 136 157 16-Jun 10-11 10-Jan 11-12 15-Mar 11-Jun 88 12-13 14-Dec 12-May 148

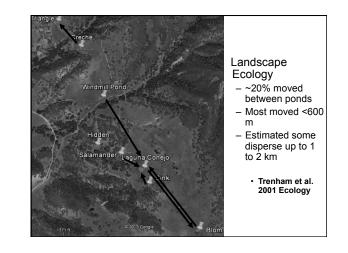


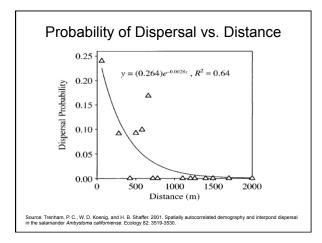


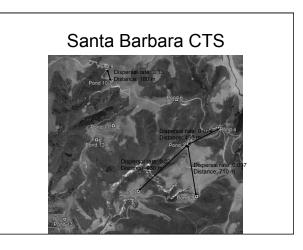


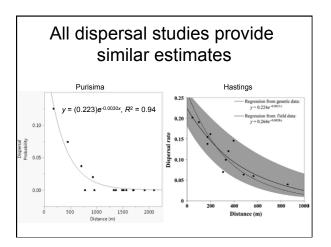


P < 0.0001

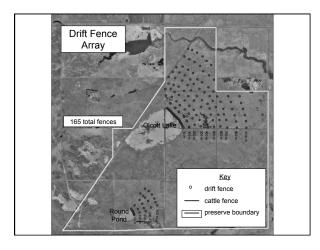


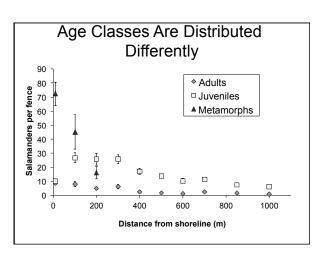


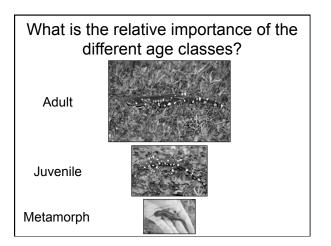

CTS Live In Small Mammal Burrows

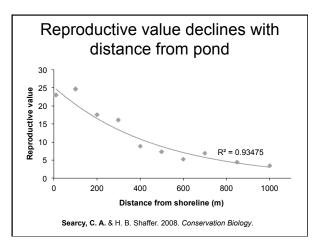


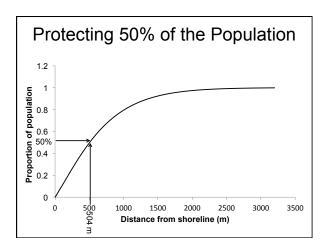

FIBER-OPTIC VIDEO courtesy of Michael Van Hattem

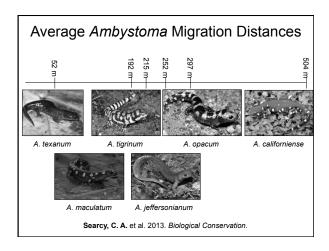


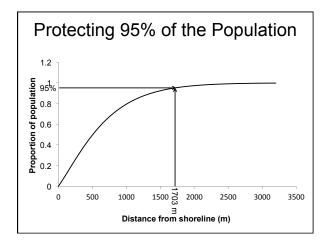

Landscape Habitat Points

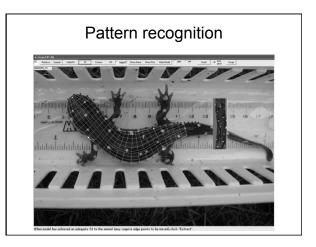

- Major upland habitats for burrows/migration
 - grassland
 - oak woodland
 chaparral/sage scrub
- Most do not remain near edge of pond
 - 680 m observed
 - -~800 m genetically estimated
- Movement between ponds 1 2 km expected

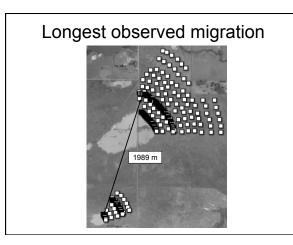

Upland Habitat Main Points


- After metamorphosis, CTS are almost always underground
- Occupy mainly ground squirrel and gopher burrows
 - Emerge to move to pond or another burrow
 Emerge only at night, usually when raining
- Aestivation has not been observed
- Most do not remain near edge of pond









How far does the average salamander move in a season?

- Average rate = 150 m/night
- Most adults are active for 2 to 5 nights during both immigration and emigration
- (150 m/night)(3.5 nights) = 525 m
- This is pretty similar to the 504 m estimate from the integration method

How far can a salamander move in a season?

- We know that a rate of 188 m/night is sustainable for at least 6 nights in a row
- There are 10 to 19 nights with appropriate weather conditions during both immigration and emigration
- (188 m/night)(10 nights) = 1880 m
- Even in a dry year, a salamander should be capable of migrating 1703 m

Jepson Study - Conclusions

- · The two methods agree very well.
- The average adult probably travels ~500 meters from the pond – almost twice the distance of any of its congeners.
- There is no reason to doubt that the top 5% of migrants travel 1703 m or more from the pond edge.
- The 2092 m buffer currently used by USFWS is within the ecophysiological capacity of the salamander in most years and is within the 95% confidence interval of the integration method.

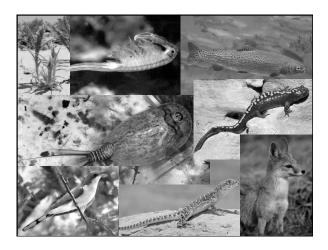
How many acres/hectares to protect 95% of CTS? • About how many hectares/acres are encompassed by a pond buffered by 1.7 km?

$$AREA = \Pi r^2$$

hectare = 10,000 m²

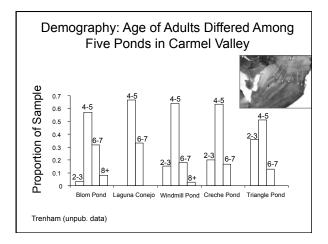
acre = 2.5 hectares

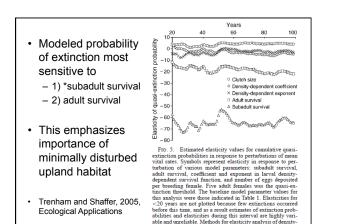
~9,000,000 m² = ~900 ha

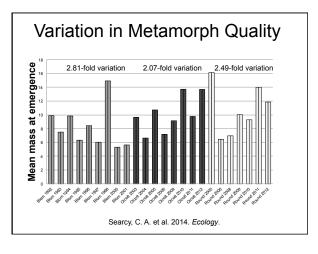

= ~2,250 acres

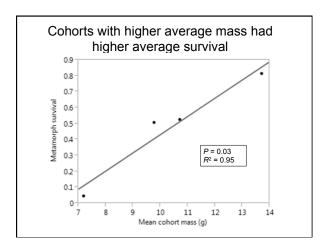
Group Exercise You are responsible for designing habitat restoration for a failing vineyard in Sonoma County. The property is 500 acres and currently has no ponds, but CTS breed in ponds on a neighboring property.

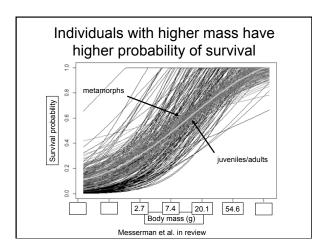
• List at least 5 priority actions for restoring CTS to this site.

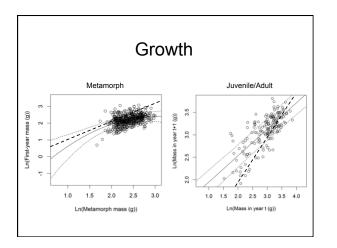

Multi-species conservation

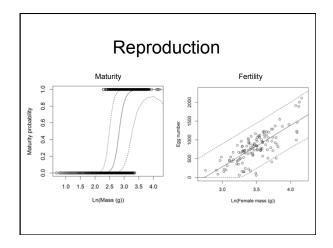

- Due to their large habitat requirements, California tiger salamanders can serve as an umbrella species for conservation of vernal pool grasslands in central California.
- Vernal pools are a bastion for rare California endemics; 89 other listed species also live within the 2092 m buffer around California tiger salamander breeding ponds.

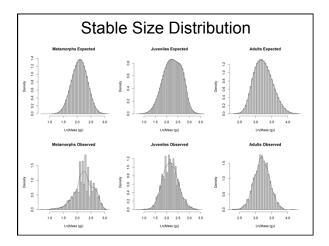

Modeling Population Extinction Risk

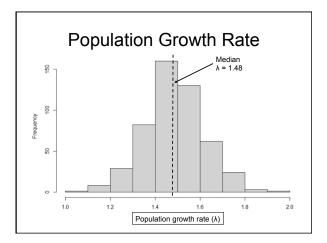

- · Key demographic parameters:
 - -Age at maturity: 1-5+ years
 - -Fecundity: ~ 800 eggs per female
 - Larval/embryonic survival: 0-10%
 - -Metamorph/Juvenile survival = ~50%
 - -Adult survival = ~70%

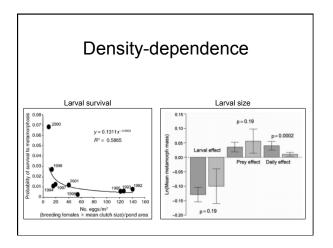


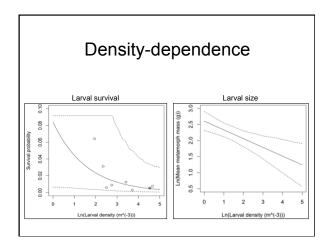


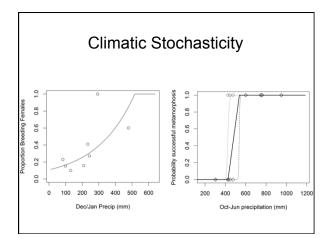

dependent stochastic models are adapted from Mor Doak (2002).

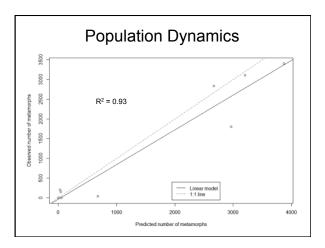


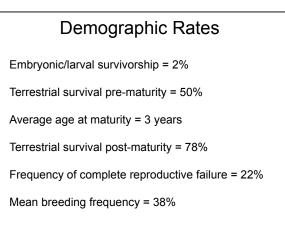


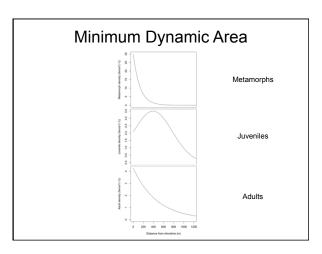


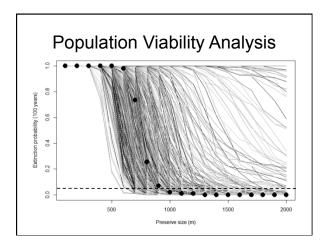


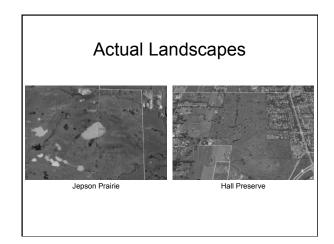


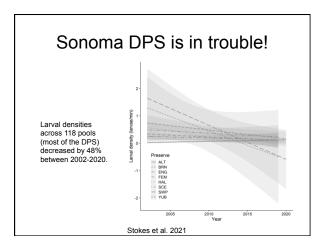


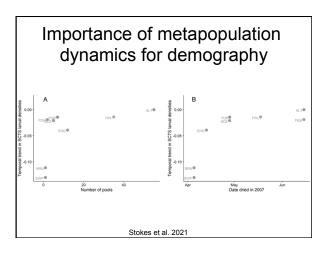


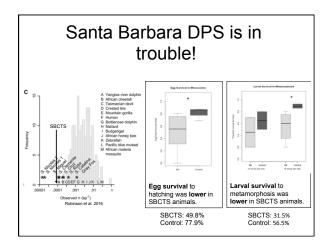


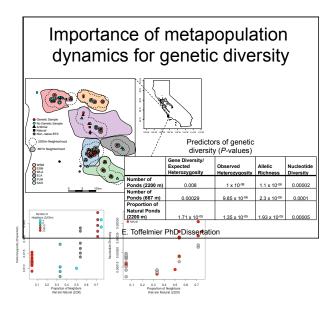








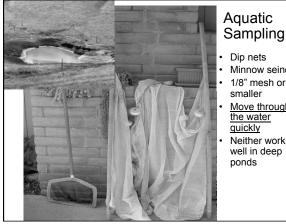




Demography – Main Points

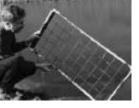
- · Female CTS can produce large numbers of eggs
 - but most breeders are at least 2 yrs old - and they don't breed every year
- Survival probability is size dependent
- · Some individuals can live 10+ years - Most don't ever make it to metamorphosis
- · Population size is much more sensitive to upland survival than to larval survival

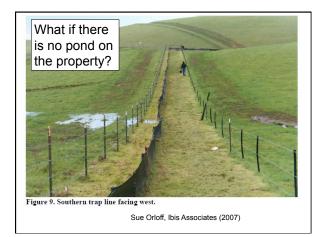
Conservation Strategies

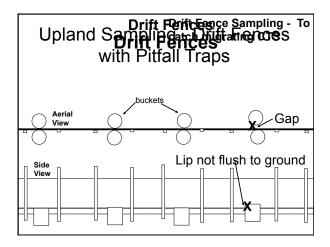

- Protect occupied landscapes
 - Ideally >2250 acre blocks; minimally 780 acres
 - With multiple breeding ponds • 7+ if possible
 - · Some ponds should be larger
- Maintain/promote habitat connectivity
 - Minimize effects of new or improved roads
 - Maximize natural habitat between ponds
 - Construct additional ponds

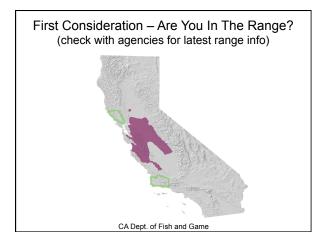
Aquatic Habitat - Managing for CTS

- · Modify/manage ponds to maintain appropriate hydroperiod
- · Eliminate predators by periodic drying
- Maintain existing berms/remove excessive siltation
- Create additional ponds
- Allow livestock grazing (esp. vernal pools)


Upland Habitat-Managing for CTS


- Maintain habitat connectivity between ponds and uplands AND between ponds
- Maintain natural habitat, especially near breeding ponds
- Maintain burrowing mammal populations
- Effects of grazing unknown, but anecdotally positive




Minnow seine 1/8" mesh or Move through Neither works

- Sampling for CTS CDFW/USFWS Guidance *requirements for a negative determination*
- 1) Site assessment assess upland and aquatic habitat onsite and within 2 km
- 2) If pond within 2 km and upland habitat only...
 Two seasons of drift fence sampling
 - ≥ 1 ft tall drift fence with pitfalls $\ge 90\%$ site perimeter
 - Pitfall buckets <33 ft apart, ≥ 2 gallon buckets
 - Traps opened for rain events <u>Oct. 15 Mar. 15</u>
- 3) If potential breeding habitat on-site
 - 2 seasons aquatic sampling for CTS larvae
 Sample >10 days apart in March, April, and May
 - Sample using dipnets and seines (if none detected in dipnets)
 One season drift fence sampling as above
 - With drift fences also around potential breeding habitat

USFWS/CDFG Reports

- · Provide Complete Information
 - Dates and times sampled
 - Rainfall/temperature data for area during study period
 - Records of all animals captured
 - Photographs of representative specimens
 - Photographs of sampling apparatus
 - Records of all communications with USFWS
 - For aquatic sampling, calculations of the total effort expended/area covered each time

CTS Basics – Final Review

- Aquatic Habitat just for breeding
 - Good ponds are temporary but dry only after May
 - Bigger, longer lasting ponds are better
- Upland Habitat the rest of their lives
 - On land CTS occupy small mammal burrows
 - Many move hundreds of meters from ponds
 - Only return to ponds to breed (not even every year)
- Landscape Considerations
 - More ponds = more security against local catastrophes
 - For connectivity, ponds should be 1-2 km or less apart
- Weather/Rainfall
 - drives migrations and population dynamics