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How climate change may affect parasite–host assemblages and emerging infectious diseases is an important question in
amphibian decline research. We present data supporting a link between periods of unusually warm summer water
temperatures during 2006 and 2008 in a northern California river, outbreaks of the parasitic copepod Lernaea
cyprinacea, and malformations in tadpoles and young of the year Foothill Yellow-legged Frogs (Rana boylii). Relative to
baseline data gathered since 1989, both 2006 and 2008 had significantly longer periods when daily mean water
temperatures exceeded 20 C̊ compared to years without copepod outbreaks. Infestation varied spatially in the
watershed, as prevalence increased concomitantly with temperature along a 5.2 km longitudinal transect. At breeding
sites of R. boylii with copepods in 2006, infestation ranged from 2.9% of individuals upstream to 58.3% downstream. In
2008, copepods were absent from the most upstream sites and infested up to 28.6% of individuals sampled at
downstream locations. Copepods most frequently embedded near a hind limb or the cloaca. Among individuals with
parasites in 2006, 26.5% had morphological abnormalities compared to 1.1% of un-infested individuals. In 2008 when
the infestation peak occurred late in development (post Gosner stage 39), abnormalities were not associated with
copepod infestation. In both years, recently metamorphosed frogs with copepods were, on average, slightly smaller
than those not infested. These occurrences represent a sudden increase in local prevalence atypical for this river
ecosystem. Previously we had only once seen copepods on amphibians (on non-native Bullfrogs, Rana catesbeiana), six
km further downstream. Pacific Chorus Frogs, Pseudacris regilla, which co-occur with R. boylii in shallow near shore
habitats were not used as hosts. The data suggest that increasing summer water temperatures, decreased daily
discharge, or a combination of both, promote outbreaks of this non-native parasite on an indigenous host, and could
present a threat to the long-term conservation of R. boylii under the flow regime scenarios predicted by climate change
models.

W
ITH increased attention on parasitism and
disease as threats to biodiversity, there is a need
to identify the pathogens and parasites which

pose significant risks (Daszak et al., 2000; Smith et al., 2006)
and determine which ecological factors may be drivers of
disease spread (Plowright et al., 2008). Warming and
changes in precipitation anticipated with global climate
change are predicted to exacerbate the impact of parasites
and pathogens in aquatic ecosystems (Marcogliese, 2001).
Increased air and water temperatures can enhance the
breeding of vector organisms (Freed et al., 2005), increase
overall population growth rates of a pathogen (Woodhams
et al., 2008) or accelerate transmission rates by causing
proliferation of infective stages (Freed et al., 2005; Poulin,
2006). Amphibians with narrow thermal niches are partic-
ularly at risk from warming, and are vulnerable to multiple
stressors including the spread of virulent infectious diseases,
such as chytridiomycosis (Berger et al., 1998; Muths et al.,
2003; Scherer et al., 2005; Wake and Vredenburg, 2008),
which may be expanding through space and time indepen-
dent of warming (Lips et al., 2008). The role of pathogens
and parasites in amphibian declines, however, is not limited
to chytridiomycosis (Pessier, 2002; DiRosa et al., 2007; Picco
and Collins, 2008), and as Pounds et al. (2007) state, ‘‘the
rogues’ gallery of amphibian pathogens that benefit from
climate change is only just beginning to be assembled.’’

Accordingly, our intention in this paper is to alert
biologists to a crustacean parasite particularly sensitive to
temperature. We report the prevalence of a copepod, Lernaea
cyprinacea, affecting larval (Fig. 1A, B) and recent post-
metamorphic stages (Fig. 1C, D) of the river breeding
Foothill Yellow-legged Frog, Rana boylii. We hypothesize
that the outbreaks associated with warm and dry conditions
in the South Fork Eel River of northern California foreshad-
ow a consequence of the climate change predictions across
the range of R. boylii in California and Oregon. Stream
temperatures will likely be influenced through increased
ambient summer air temperatures and reduced discharges
(Kiparsky and Gleick, 2003; Snyder et al., 2004; Webb et al.,
2008), two factors that control the heating of water as it
flows downstream. General sensitivity analyses of a process-
based, basin-scale stream temperature model developed for
the South Fork Eel indicate that reductions in flow may have
the greatest impacts on stream temperature (Allen, 2008).

Lernaea cyprinacea, commonly referred to as Anchor
Worm, is a Eurasian species that has become globally
widespread. Despite its Latin name, it does not limit itself
to cyprinid fishes for hosts. There are several reports, both
historical and recent, of L. cyprinacea using amphibians as
hosts in North America (Haderlie, 1950; Baldauf, 1961; Tidd,
1962; Hoffman, 1967), South America (Martins and Souza,
1996; Alcalde and Batistoni, 2005), and Asia (Ming, 2001).
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Parasitism by L. cyprinacea is generally a problem in
aquaculture facilities and in the aquarium trade (Hoffman,
1999), where infestation can be potentially lethal or
pathogenic when secondary microbial infections occur at
the sites of lesions. Parasitism by L. cyprinacea can, however,
be a wildlife conservation issue because of its negative effects
on the condition of sensitive native fish (Durham et al.,
2002; Bond, 2004; Hoffnagle et al., 2006) and possibly
amphibians (Ming, 2001) when it becomes established in
the wild.

There are approximately 10,000 species (in 187 families)
in the Copepoda subclass of Crustacea, and almost half of
these species are either parasitic or live in association with
other aquatic animals (Bowman and Abele, 1982; Huys and
Boxhall, 1991). Like most parasitic copepods, L. cyprinacea
has a direct life cycle involving only one host, and
transmission occurs via free swimming nauplii and the first
copepodid larval stage. Adult females carry their eggs in sacs
outside their body (Fig. 1B), from which they release
nauplii. Lernaea cyprinacea is highly thermophilic (Marcogli-
ese, 1991) and can develop from mature eggs to the first
parasitic stage in as little as 4–8 days (Al-Hamed and Hermiz,
1973). The first larval stage is taken up by fish in the gills or
by a tadpole through the spiracle (Bird, 1968). The first
through fifth copepodid stages are localized within the
tadpole’s mouth and branchial chambers (Shields and Tidd,
1963). Copepodids attach by their maxillipeds and remain
sessile, eating epithelial tissue and underlying connective
tissue (Shields and Tidd, 1974) until the fifth larval stage
when copulation occurs. Post-copulation, females undergo
another molt, travel along the integument of the tadpole,
and penetrate the tadpole’s tissue with their heads. A
transformation then occurs in which the body of L.
cyprinacea lengthens (up to approx. 1 cm) and the cephalo-
thorax develops into an anchor shaped process (Bird, 1968).

Penetration sites can be anywhere, but most often near the
juncture between tail and body, and a number of tadpole
tissues (e.g., liver, lung, spinal cord) can be damaged (Tidd,
1962). As much of this previous work examining copepod
effects on tadpoles has been conducted in the laboratory,
our focus here is to document the in situ environmental
conditions associated with parasitic copepod outbreaks,
spatial patterns of prevalence, and the coincidence between
the presence of copepods and morphological abnormalities
in an otherwise robust population of frogs.

MATERIALS AND METHODS

We conducted parasite surveys along 5.2 km of the South
Fork Eel River (SF Eel) on the University of California’s
Angelo Coast Range Reserve, Mendocino Co., California
(39.733uN, 123.65uW). Study of R. boylii began there in 1989
with ongoing full-reach censuses of frog breeding estab-
lished in 1992. Along the study reach, there are five
perennial tributaries, and several more ephemeral drainages,
inhabited by juvenile and adult R. boylii. Spawning,
however, occurs only at historic breeding sites along the
margins of the SF Eel. The sites are geomorphologically
distinct locations (i.e., depositional areas, such as cobble
bars or pool tail outs) with the most populous sites clustered
near (within one riffle-pool sequence) tributary confluences
(Kupferberg, 1996). Mean (61 s.e.) inter-site distance is
118.8 6 11.4 m (n 5 44). The extent of individual
movement among sites is not known, but we assume the
collection of frogs using these breeding sites constitutes a
meta-population.

We sampled frogs for copepods in 10% of the study reach
(approximately 520 m) during 2006 and 2008. No copepods
were observed on frogs in 2007. In 2006, search efforts were
spatially concentrated and in 2008, search efforts were

Fig. 1. (A) Adult female copepod parasite (approx. 7 mm long) Lernaea cyprinacea on a tadpole of Rana boylii with arrow indicating the insertion
site near the base of a developing hind limb. (B) A close-up view of the copepod’s abdomen with arrow indicating its egg sacs. Copepods on recently
metamorphosed frogs embedded on the throat (C) and near the cloaca (D).
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spatially dispersed, but we sampled similar total lengths of
river each year. On 17–18 August 2006, we visited the near-
shore habitats of three breeding sites, at the upstream,
midpoint, and downstream extent of the reach. One month
later, as part of a mark and recapture demographic study,
juvenile R. boylii were captured over three days, 16, 17, and
21 September, along a 460 m segment near the midpoint of
the 5.2 km reach. Captured individuals received daily batch
marks using Visible Implant Elastomer (Northwest Marine
Technologies, Seattle, WA). To determine what proportion
of the population was examined for copepods, we estimated
the abundance of recently metamorphosed frogs for the
three-day survey period using program CAPTURE (Otis et al.,
1978; White et al., 1982). An estimator was not available for
the best-fit model, so the model with the next highest
ranking was used. Between 13 August and 7 September 2008,
we visited 13 breeding sites. The relationship between
parasite prevalence and distance was evaluated using linear
regression. Prevalence data from 2008 were transformed by
taking the arcsin square root of the proportion infested at
each of the 13 breeding sites sampled. In both years we
measured tadpole and frog snout-to-urostyle length (SUL) to
the nearest mm, and visually inspected for ectoparasites and
morphological abnormalities. In 2008, we also inspected
Pacific Chorus Frogs, Pseudacris regilla.

To describe environmental conditions in the river, we
calculated mean daily discharge (m3 sec21) for August, and
the number of summer days with mean water temperature
$20uC from data collected hourly at the most upstream
extent of the study reach. Stream gaging and thermal
monitoring began in 1989 at a retired USGS gaging station
re-established by M. E. Power and W. Dietrich. Not all years
have complete data sets due to occasional equipment failures.
The gaging station defines the starting point of the 5.2 km
study reach where breeding censuses and parasite surveys
occurred. Along with the abiotic factors, we calculated annual
density of clutches of eggs (#/km) and compared values for
2006 and 2008 to the longer term means of ‘‘no copepod’’
years (1992–2005, 2007) using t-tests. To detect whether a
gradient in water temperature exists along the length of the
study reach, we placed iButton (Maxim Integrated Products,
Sunnyvale, CA) temperature recorders at seven locations,
between 25 August and 7 September 2008. Temperature was
measured in 0.5uC increments every two hours, with an
accuracy of 6 1uC. We calculated the two-week average of
daily mean temperature and assessed the relationship with
distance downstream using linear regression.

We investigated whether copepod infestation could be
associated with the occurrence of abnormalities. For 370
individuals sampled in 2006 (332 were post-metamorphosis)
and 411 in 2008 (159 were post-metamorphosis), we
compared the frequency of abnormalities among animals
infested by L. cyprinacea to the frequency of abnormalities in
un-infested animals with G-tests of independence. We did
not confirm the designation of ‘‘un-infested’’ by dissection
or other independent method. Parasites may have been shed
prior to our observations. Host rejection of L. cyprinacea by
tadpoles of R. pipiens has been observed via a process
involving extensive formation of connective tissue to
encapsulate the anchor process of the copepod (Shields
and Goode, 1978).

In 2008, we inspected abnormal R. boylii for trematodes,
along with a random subset of normal individuals to
determine if the parasite Ribeiroia ondatrae might be

associated with the observed malformations. However, due
to the protected status of R. boylii in California, collections
were limited. To reliably conclude the presence and
abundance of trematodes, we supplemented necropsy data
of R. boylii with dissections of normal and abnormal P. regilla
that had developed in the same reach of the SF Eel.
Pseudacris regilla is present at breeding sites of R. boylii, does
not have any special protections, and is susceptible to
infection by R. ondatrae (Johnson et al., 1999). Groups of 7–8
metamorphs of P. regilla were collected at two-week intervals
during August and September 2008. Following euthanasia in
MS-222, frogs were inspected for all trematode metacercariae
using a stereo dissection scope. Metacercariae were counted,
removed, excysted, and identified using a compound
microscope.

RESULTS

The overall prevalence (# of infested individuals/total #
inspected) of copepod infestation on R. boylii was 9.2% (34
cases/370 individuals in 520 m) in 2006, and 10.5% (43/411
individuals) in 2008. None of 75 inspected P. regilla had
copepods. Copepod prevalence varied spatially (range 7.0 to
58.3% in 2006, 0 to 28.6% in 2008), and the angular
transformed proportion of infested individuals increased
significantly with distance downstream along the 5.2 km of
river sampled (R2 5 0.68, F 5 23.05, df 5 1,12, P , 0.001;
Fig. 2). Daily mean water temperature similarly increased
with distance (R2 5 0.70, F 5 11.7, df 5 1,6, P 5 0.02; Fig. 2).

The population estimate, based on the 2006 mark and
recapture effort, was 622 6 24.3 recently metamorphosed
frogs, which corresponds to a density of 1.35 6 0.05
individuals per m of river. Our capture rates of 0.73 and
0.78 frogs per m in 2006 and 2008, respectively, indicate
that we were inspecting about half the animals present at
our sampling sites, assuming similar densities between
years.

The outbreaks of copepods were associated with three
unusual conditions: high water temperature (in 2006 and
2008); drought induced low flow (2008); and high densities
of tadpoles (Fig. 3). In 2006, R. boylii had the greatest
reproductive output in 17 years of record, with the number

Fig. 2. Prevalence of parasitic copepod infestation in 2006 and 2008,
and daily mean water temperature over 14 days between August and
September 2008 along 5.2 km of the South Fork Eel River, Mendocino
Co., California. For distance sampled, zero is at the most upstream end
of the study reach.
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of clutches deposited in the study reach significantly greater
than average (Table 1). Additionally, there were significant-
ly more days when the mean daily water temperature was
above 20uC in 2006 and 2008, compared to years without
copepod outbreaks (14 years with complete temperature
data sets: 1990–1998, 2001, 2003–2005 and 2007). In 2008,
reproductive output was again high, and extremely low flow
conditions contributed to high concentrations of tadpoles
in near shore habitats.

The abundance (# of parasites/host) was uniformly a
single embedded copepod in 2008. In 2006, only three
individuals had two copepods, with the remainder having
a single parasite. Copepod prevalence differed among
Gosner stages in infested tadpoles and froglets in both
2006 (G 5 13.85, df 5 2, P 5 0.001) and 2008 (G 5 7.79, df 5

1, P 5 0.05). The highest prevalence in 2006 occurred at
earlier Gosner stages than in 2008 (Fig. 4A). Copepods
were most frequently embedded near the base of a hind
limb or the cloaca (Fig. 4B). Morphological abnormalities
were also most frequent in the hind limbs (Table 2),
but were not generally common in the whole sample of
R. boylii (3.42% in 2006, and 2.68% in 2008). Of those
infested with copepods in 2006, 26.5% had abnormalities
while only 1.1% of un-infested animals had abnormalities.
The association between limb abnormalities and copepod
infestation was highly significant (G 5 30.4, df 5 1, P ,

0.001). In 2008, however, no association was observed (G 5

0.8, df 5 1, P . 0.5). We also found un-infested P. regilla
missing a hindlimb (one case each in 2006 and 2008) and

infested, but morphologically normal, Pacific Giant Sala-
mander (Dicamptodon ensatus): one dead in 2006, one alive
in 2007.

In both years recently metamorphosed frogs with cope-
pods were slightly smaller than those without copepods
embedded (Fig. 4C). These differences approach statistical
significance (F 5 3.02 2, df 5 1, 485, P 5 0.08) in a two-way
analysis of variance of ln(SUL). Differences in size at
metamorphosis were significant between years (F 5 10.97,
df 5 1, 485, P 5 0.001), and there was no copepod 3 year
interaction (F 5 0.07, df 5 1, 485, P 5 0.8).

The community of trematode parasites observed in 14
R. boylii and 26 P. regilla recent metamorphs is summa-
rized in Table 3. Ribeiroia ondatrae was identified in only
one of the R. boylii and was absent in all P. regilla. The
one infected R. boylii had a single metacercarial cyst, and
had normal morphology. Echinostomes were common in
the kidneys of both species, though four times more
abundant in R. boylii (P , 0.01). Echinostoma sp. infection
intensity was quite variable; for example, two R. boylii
suffered a burden of more than 700 cysts while others had
none. Manodistomum sp. was significantly more abundant
in P. regilla metamorphs (P , 0.05). Other larval
trematodes known to infect amphibian larvae, e.g.,
Fibricola sp., Alaria sp., Clinostomum sp., Auridistomum
sp. (Sutherland, 2005), were not encountered. In the field,
while inspecting for copepods, we observed the monoge-
nean trematode, Gyrodactylus sp., on the tails of many
tadpoles of R. boylii.

Fig. 3. Daily mean water temperature and flow conditions during the summers of 2006 and 2008 when outbreaks of Lernaea cyprinacea occurred.
Confidence interval (shaded gray area) is based on the distribution of temperatures for that date over 14 years with complete records (1990–1998,
2001, 2003–2005, 2007) when copepods were not observed on amphibians. Arrows indicate the discharge when frogs began breeding (earlier in
2008, later in 2006).

Table 1. Environmental Conditions Associated with Outbreaks of Parasitic Copepods on Rana boylii (2006 and 2008), as Well as Summers When
Copepods Were Not Observed. Asterisks indicate the significance of one-sample t-tests comparing the mean of non-copepod years to the 2006 and
2008 individual values, using the Bonferroni adjusted (for six tests) critical value of P , 0.0083.

Environmental factor n = # of years years w/o copepods (mean 6 s.e.) 2006 2008

No. days mean water temperature . 20uC
(n 5 14) 8.57 6 2.3 16* 15*

Mean daily discharge for August
(m3 sec21, n 5 18) 0.168 6 0.018 0.195 0.110*

R. boylii density (clutches/km, n 5 15) 100.3 6 6.5 176.9* 134.0*
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DISCUSSION

The outbreak of L. cyprinacea in the SF Eel was associated
with periods of warm water temperatures, declining dis-
charge, and shrinking pool sizes, conditions which are
typical for infestations on fish in other rivers (Adams, 1984;
Medeiros and Maltchik, 1999). In addition to the warm
water temperatures, host density was high because there
were record high numbers of egg masses of R. boylii and
conditions for survival to hatching were excellent. The two
main sources of embryonic mortality, scour and stranding
(Kupferberg, 1996), were largely absent as there were no
spates sufficient to scour egg masses and river stage declined
gradually to keep eggs inundated. In late July 2006, there
was an abnormally hot period when fish kills were observed.
In 2008, there were also several warm periods when mean
daily water temperatures exceeded the upper bounds of the
95% confidence interval for the mean of that date, although
not as extreme as in 2006. We hypothesize that tadpoles
may have been both directly stressed by periods of high
temperatures and indirectly affected because warmth favors
the development, reproduction, and fecundity of L. cypri-
nacea (Shields, 1978). Extremely low discharge and concom-
itantly slow current velocities in the river may also have
enhanced transmission of copepod nauplii, as has been
observed for the free-swimming stages of the myxozoan
parasite responsible for whirling disease in salmonids
(Hallett and Bartholomew, 2008).

The spatial pattern of higher copepod prevalence at the
downstream end of the study reach may indicate an
invasion front as well as reflect the gradient in thermal
conditions (i.e., cooler water upstream). We observed these
parasites 14 years earlier (21 September 1992) on non-native
amphibians six km downstream of the study reach. In a pool
with dense aggregations of first year Bullfrog tadpoles (R.
catesbeiana), five tadpoles with L. cyprinacea embedded at the
hind limb buds were collected and identified via dissection
(M. Poteet and Kupferberg, unpubl.). Adult copepods were
not seen on amphibians in the intervening years despite

Fig. 4. Prevalence of infestation by Lernaea cyprinacea (A), insertion
points (B), and snout–urostyle length (SUL) of Gosner stage 46
individuals (C), among tadpoles of Rana boylii in 2006 (dark bars)
and 2008 (light bars). Numbers above bars indicate total number of
individuals examined.

Table 2. Relative Frequency of Abnormality Types in Tadpoles and Metamorphs of Rana boylii (Total Individuals Examined: n 5 370 in 2006, 411
in 2008).

Abnormality type Description

n

%2006 2008

Hind limb
Amelia Missing leg 3 3 25
Apody Absence of a foot 1 2 12.5
Brachymelia Abnormally short limb 1 — 4.2
Femoral projection Bony projection 2 — 8.3
Hemimelia Partial/complete absence of distal part of leg 1 1 8.3
Hyperextension Rigid flexure of a joint 1 — 4.2
Polymelia Extra leg 1 1 8.3
Syndactyly Fused digits 1 — 4.2

Fore limb
Amelia Missing arm — 1 4.2
Apody Absence of a hand 1 1 8.3

Other
Missing eye 1 1 8.3
Misshapen snout — 1 4.2

g Abnormal individuals 13 11 100
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active use of the Angelo Coast Range Reserve by ecologists.
As noted during annual fish snorkeling surveys (begun in
1988 by M. E. Power, pers. comm.), however, copepods have
been continuously present on Roach (Lavinia symmetricus),
and in 2006 and 2008 were abundant on juvenile Steelhead
(Oncorhynchus mykiss) as well as Roach (Palen, pers. obs.).

It is possible, that during the intervening years larval L.
cyprinacea have been present in tadpole gills, but inconspic-
uous to field researchers. In years with ‘normal’ tempera-
tures, R. boylii might rid themselves of the ectoparasitic
copepodids in the branchial chamber if gill resorption
preceded L. cyprinacea reaching sexual maturity and trans-
forming to mesoparasitic embedding adults. This hypothesis
is supported by observations of 15 tadpoles collected in 2006
and held in captivity as part of a swimming study
(Kupferberg et al., 2008). Tadpoles maintained for one week
at 18uC with several water changes did not reveal any
parasites when examined at 5–103 magnification. After
completing swimming trials, four of 15 SF Eel tadpoles
transferred to a warmer facility (21–23uC) had adult parasites
embedded near a hind limb within three days. Tadpoles
from two other rivers did not develop infestations. After
removing the infested individuals and chilling the water
#19uC, no further incidences of copepods embedding
occurred and all 11 tadpoles successfully metamorphosed.
Of the four with copepods, two survived. One could not
bend its left hind limb and died six weeks post-metamor-
phosis. The other lacked visible abnormalities but was small
and died three months later. This trend of infested frogs
being smaller was consistent in the wild at the SF Eel, and
likely has negative consequences as size at metamorphosis is
a correlate of over-winter survival and fitness in amphibians
(Smith, 1987; Semlitsch et al., 1988; Altwegg and Reyer,
2003).

We have not established a cause and effect relationship
between the growth of a copepod’s anchor process and
malformation of a limb, although insertion is most common
near the hind limb (Tidd, 1962; Shields and Tidd, 1963), and
copepods have previously been suspected to play a role in
hind limb abnormalities (Ming, 2001). The predominance of
inguinal attachment is consistent with a fluid dynamics
model illustrating that the region is a dead zone in flow
around a tadpole’s body where hind limbs can grow without
increasing drag forces (Liu et al., 1996, 1997). High-speed
videography observations confirm that echinostomatoid
cercaria attack tadpoles in that region (Taylor et al., 2004)
even while tadpoles twist, turn, and swim. Despite the
propensity to embed near hind limbs, almost three-fourths
of infested R. boylii in 2006 did not exhibit abnormalities
and the association did not recur in 2008. We do not suspect
widespread involvement of the trematode parasite Ribeiroia
ondatrae at the SF Eel, but cannot eliminate it as a possibility.

One R. boylii was found with a cyst in 2008; however, that
individual was morphologically normal. The absence in P.
regilla also indicates that Ribeiroia is not common at the SF
Eel. Infection by Ribeiroia can lead to severe limb malfor-
mations (Johnson et al., 1999, 2002; Johnson and Suther-
land, 2003; but see discussion in Lannoo, 2008 for a critical
review) with likely mechanisms including limb bud rotation
when metacercariae encyst (Sessions, 1999; Stopper et al.,
2002). Although Ribeiroia has been shown through labora-
tory and field studies to induce fore- and hind limb
malformations (reviewed by Blaustein and Johnson, 2003),
its absence at wetlands with high prevalence (.5%) of
malformations is clear evidence that other causes are
important factors (Meteyer et al., 2000; Lannoo et al.,
2003; Skelly et al., 2007, Lannoo, 2008).

Other possible causes include the direct effects of heat
stress on the development of hind limb abnormalities
(Dournan et al., 1998) and asymmetries (Alford et al.,
2007). Although the etiology of the abnormalities we
observed is not known, we can rule out a wide range of
anthropogenic factors that have been implicated in causing
abnormalities, ranging from acidification, radioactive pol-
lution, heavy metals, and agricultural chemicals (reviewed
by Oullet, 2000; Lannoo et al., 2003; Lannoo, 2008). Surface
and ground water pollutants are not likely in the remote and
relatively pristine mixed-conifer forests within the Angelo
Coast Range Reserve. Downwind drift of aerial pesticides is
unlikely given the site’s close proximity to the Pacific Ocean
and prevailing wind direction from the northwest. Also, the
,3% overall limb abnormality prevalence is still within an
overall baseline of 0–3% and thus might not represent any
deviation from normal genetic or developmental errors and
injury.

A possible explanation for the lack of consistent associa-
tion between copepods and abnormalities is that the
parasite’s effects may be stage specific. Experiments with
tadpoles of Rana pipiens and Ribeiroia ondatrae illustrate that
timing of infection can alter malformation outcomes
(Schotthoefer et al., 2003). Tadpoles were exposed to
cercariae at the pre-limb-bud (Gosner stages 24 and 25),
limb-bud (Gosner stages 27 and 28), or paddle (Gosner
stages 31–33) stages of development. At metamorphosis,
only tadpoles infected at the limb-bud stage displayed a
high (16%) malformation rate, whereas less developed
tadpoles suffered significant mortality. When cercariae
encysted after the paddle stage, neither limb development
nor tadpole survival was influenced. At the SF Eel in 2008,
tadpole breeding began more than two weeks earlier than in
2006, and warm temperatures in May accelerated develop-
ment, such that many tadpoles’ limbs had already complet-
ed formation at the peak of the copepod outbreak in August.
In 2006, infestation was more prevalent in earlier develop-

Table 3. Trematode Parasite Community within Rana boylii and Pseudacris regilla from the South Fork Eel River. Sample size (n) is number of
amphibians inspected via necropsy (collected between 15 August and 15 September 2008). The first number is infection prevalence (# infected
frogs/# inspected frogs), while the number in parenthesis is parasite abundance (mean # metacercarial cysts per inspected frog). Listed P-value of
non-parametric Wilcoxon rank-sum test compares trematode abundance between the two species.

Type of trematode Rana boylii (n = 14) Pseudacris regilla (n = 26) P

Ribeiroia ondatrae 7.1% (1) 0% n.s.
Echinostoma spp. 100% (222.8) 84.6% (49.6) 0.004
Manodistomum spp. 57.1% (6.5) 92.3% (10.7) 0.040
Unidentifiable cyst 7.1% (1) 3.8% (1)
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mental stages relative to 2008. The better body condition
(i.e., larger size) in 2008 may also have contributed to a
different response to infestation. An explicit investigation of
the relationship between the timing and location of an adult
female copepod’s penetration site, the condition of the
tadpole host, and the potential teratogenetic effects on limb
formation is needed.

Parasites are but one of many threats to R. boylii, which
has disappeared from 54% of its historic sites (Davidson et
al., 2002; Lind, 2005). Potential causes for decline are
diverse, but absence from historic localities is more common
in close proximity to large dams (Lind, 2005). Dam-
associated risk factors to this species, whose entire life cycle
is completed in fluvial habitats, include the scouring of egg
masses by large magnitude dam releases (Lind et al., 1996)
and predation by invasive species that flourish in waterways
subject to flow diversion and regulation (Hayes and
Jennings, 1988; Moyle and Light, 1996; Marchetti et al.,
2004). Dams can also alter downstream thermal regime, but
the extent of impacts on R. boylii has not been quantified,
and whether dams would increase the risk of parasite
outbreaks is not clear. Temperatures can be either raised or
lowered during dam operation. When outfalls are at low
elevation on a dam, water is drawn from the hypolimnion of
the upstream reservoir, and the resulting temperatures
downstream are often colder than they would be naturally
and thus create a refuge from thermophilic parasites
(Hoffnagle et al., 2006). Alternatively, the retention of water
behind a dam can result in artificially low summer base flow
discharges, causing unnaturally warm downstream temper-
atures. Stressors may also originate outside a population’s
watershed, such as the downwind drift of organophosphate
pesticides (Davidson, 2004; Sparling and Fellers, 2007). At
present, however, observations within regulated watersheds
and manipulative field experiments implicate the direct
effects of flow alteration, particularly aseasonal pulsed
releases of water, as a proximal cause of R. boylii decline
(Kupferberg et al., 2008). If copepod parasitism or the direct
effect of thermal stress on R. boylii at the un-regulated SF Eel
did result in low recruitment, we would not detect a
population-level response until the females of the 2006
and 2008 cohorts reach reproductive maturity and their egg
masses are counted in future censuses. Thus, the conserva-
tion implications of the parasites reported here remain an
open question and an active area of research within our
group.
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