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A Sightability Model for Correcting Visibility
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ABSTRACT Unbiased estimates of burrowing owl populations (Athene cunicularia) are essential to achieving
diverse management and conservation objectives. We conducted visibility trials and developed logistic
regression models to identify and correct for visibility bias associated with single, vehicle-based, visual
survey occasions of breeding male owls during daylight hours in an agricultural landscape in California
between 30 April and 2 May 2007. Visibility was predicted best by a second-degree polynomial function of
time of day and 7 categorical perch types. Probability of being visible was highest in the afternoon, and
individuals that flushed, flew, or perched on hay bales were highly visible (>0.85). Visibility was lowest in
agricultural fields (<0.46) and nonagricultural vegetation (<0.77). We used the results from this model to
compute unbiased maximum likelihood estimates of visibility bias, and combined these with estimated
probabilities of availability bias to validate our model by correcting for visibility and availability biases in 4
independent datasets collected during morning hours. Correcting for both biases produced reliable estimates
of abundance in all 4 independent validation datasets. We recommend that estimates of burrowing owl
abundance from surveys in the southwest United States correct for both visibility and availability biases.
� 2011 The Wildlife Society.
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A fundamental concern when conducting visual surveys for
wildlife is that some individuals are not seen by observers
(Krebs 2001,White 2005, Diefenbach et al. 2007). Failure to
detect all individuals that are available for detection in a
sampled area is termed visibility bias, measured as a proba-
bility (PV), and differs from availability bias, which refers to
the probability of being available for detection (PA;
Diefenbach et al. 2007). Visibility bias can be a primary
source of error in surveys (White 2005), and can vary spa-
tially, temporally, among modes of travel during surveys
(e.g., automobile, aircraft, or foot-based surveys), and among
observers (Pollock et al. 2002, Diefenbach et al. 2003, Kery
and Schmid 2004). Availability bias may also be an important
source of error in surveys, and can vary spatially and tempo-
rally (Diefenbach et al. 2007). The product of these 2
parameters equates to detection probability (P). When pop-
ulation estimation fails to incorporate variation in visibility
and availability, the resulting estimates and inferences based
on those estimations will be biased.
Correcting estimates of population size ðN̂ Þ for visibility

and availability biases is vital for studies that compare popu-

lation densities or abundance across space and time (White
2005, Diefenbach et al. 2007), and is especially important for
long-term monitoring of species of conservation concern.
The burrowing owl (Athene cunicularia) is listed as a Species
of National Conservation Concern in the United States due
to declines across much of its range, and reliable population
estimates are needed to achieve diverse management and
conservation objectives (U.S. Fish and Wildlife Service
2002). Because it is listed or being considered for listing
as Threatened or Endangered in many western states (James
and Espie 1997, Klute et al. 2003), range-wide surveys have
been recommended (Holroyd et al. 2001). Guidelines for
conducting standardized visual surveys prior to development
in an area have been developed by numerous nongovernmen-
tal organizations and regulatory agencies across the south-
west (California Burrowing Owl Consortium 1997, Arizona
Game and Fish Department 2007, NewMexico Department
of Game and Fish 2007). Currently, these guidelines do not
specify how to account or correct for visibility or availability
bias that may occur due to variable environmental conditions
associated with habitat, time of day, or weather.
Although factors that affect detection of owls during the

breeding season have been reported for populations in the
northwest and central United States (Conway et al. 2008),
the environmental conditions (i.e., temperature, precipitation,

Received: 6 May 2009; Accepted: 30 April 2011;
Published: 16 September 2011

1E-mail: jeffmanning@vandals.uidaho.edu

The Journal of Wildlife Management 76(1):65–74; 2012; DOI: 10.1002/jwmg.234

Manning and Garton � Correcting Biases in Burrowing Owl Surveys 65



and land use) in these regions differ dramatically from other
regions such as the southwest, where the largest concentra-
tion of owls presently occurs in the agroecosystem of the
Imperial Valley, California (DeSante et al. 2004).
Consequently, Conway et al. (2008) emphasized that ‘‘de-
tection probability of burrowing owls is affected by a variety
of extrinsic factors and such variation should be accounted for
when designing a survey protocol for a particular region.’’
Methods that estimate and correct detection bias from mul-
tiple survey occasions such as capture–recapture (Williams
et al. 2002) or point-coordinate capture–recapture (Manning
and Goldberg 2010) are available, but multiple survey occa-
sions can be costly and hence constrain the extent of sampling
area when attempting to achieve assumptions of population
closure required for estimating abundance across large
agroecosystems.
Constraining the extent of sampling within large areas such

as the Imperial Valley where an estimated 5,600 breeding
pairs of owls occur (DeSante et al. 2004) can be problematic.
Dense owl populations such as this can extend across a range
of environmental conditions that lead to variable rates of
visibility bias during a single standardized survey occasion. A
single-occasion survey method would allow fewer observers
to cover the same sampling area as that required for multi-
occasion surveys, or to cover a larger area that incorporates a
broader range of environmental conditions. However, a
count from a single survey occasion can be fraught with
both visibility and availability biases. Fortunately, estimates
of availability ðP̂AÞ during owl abundance surveys in south-
west agroecosystem environments are available (Manning
2011), and recent methods are available for estimating visi-
bility bias. Thus, models that jointly correct for availability
and visibility biases from a single survey occasion in south-
west agroecosystems are needed to provide a relatively af-
fordable alternative to multiple survey occasions that can
provide broad coverage of these systems for long-term
monitoring.
Some of the variation that occurs in visibility of owls can be

minimized using skilled observers and standardized proto-
cols so that surveys are conducted under similar conditions,
but it is unlikely that these actions would eliminate all
visibility bias (Burnham 1981, Johnson 1995). Additionally,
analytical methods that estimate visibility bias can be used
(e.g., Nichols et al. 2000, Farnsworth et al. 2002, Royle and
Nichols 2003), and these can be generalized to incorporate
visibility bias of birds counted under different conditions.
One method that can be less expensive to apply than others is
the development and application of a sightability model,
which is based on a 2-stage process. First, a sightability
dataset is collected, a model is fit to the data, and probabili-
ties of seeing birds under particular conditions are predicted
(Johnson et al. 1989, Giudice 2001, Pearse et al. 2008). Once
the model is validated with an independent dataset, subse-
quent surveys can be conducted in which key variables af-
fecting sightability are recorded and the sighting
probabilities are used to account for birds that were available
for detection but not seen (Cook and Jacobson 1979, Pollock
and Kendall 1987, Buckland et al. 1993). These models have

been developed for ungulate and waterfowl surveys (e.g.,
Samuel et al. 1987, Johnson et al. 1989, Anderson et al.
1998, Giudice 2001, Pearse et al. 2008). The estimation of
population size using sightability models assumes that the
population is closed, detections are independent, and counts
of observed animals are correctly recorded (Steinhorst and
Samuel 1989, Giudice 2001). However, the chief advantage
of sightability models is that they can account and correct for
multiple factors that affect visibility bias.
We developed a sightability model to identify and estimate

visibility bias ðP̂VÞ associated with a single, vehicle-based,
visual survey occasion of breeding male owls during daylight
hours in the Imperial Valley. We investigated factors that
affected P̂V by standardizing those that were controllable by
observers and measuring those potential biases that could not
be controlled. We estimated availability bias ðP̂AÞ using the
empirical model developed for owls in this system by
Manning (2011), and combined this with P̂V to calculate
a joint visibility and availability bias correction factor. We
validated this joint correction factor by calculating estimates
of abundance corrected for biases in visibility and availability,
using an independent dataset from a population of known
size.

STUDY AREA

We studied burrowing owls throughout the 3,300 km2

Imperial Valley in Imperial County, California, USA.
This area currently supports the largest population of owls
in North America (Coulombe 1971, DeSante et al. 2004),
with both resident breeding owls and winter migrants. It is a
desert environment intensively managed year-round for irri-
gated agricultural production, with alfalfa (Medicago sativa),
Sudan grass (Sorghum bicolor), Bermuda grass (Cyondon dac-
tylon), and wheat (Triticum spp.) as the dominant crops
(Falkowski and Manning 2011). Within this agricultural
landscape, owls nested almost entirely within or along irri-
gation drains, canals, and ditches (water conveyance struc-
tures) that paralleled access roads (Manning 2011).

METHODS

Surveys
We conducted independent visibility trials from sunrise to
sunset at randomly selected active owl nests (i.e., each nest
received a single trial) between 30 April and 2May 2007.We
chose this period because winter migrants are no longer
present and it corresponded with the pre-hatch stage of
the nesting cycle, when females incubate and males remain
sentinel outside the nest entrance (Martin 1973, Plumpton
and Lutz 1993). We balanced survey effort with 12 hr of
survey effort per 1-hr survey period over the 3 days.
We surveyed each nest once with 1 observer and 1 driver

without the aid of optical equipment in a vehicle that traveled
11 km/hr. The observer and driver both located owls, but the
observer usually detected owls. Each trial was preceded by 5–
10 min of continuous observations by 1 person with optical
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equipment in a second vehicle parked at a distance that we
believed would not disturb owls (approx. 160 m). To avoid
the potential bias of behavioral responses to the parked
vehicle, we randomly chose when each trial was started
between 5 min and 10 min after continuous observations
began, at which time the person in the parked vehicle
recorded whether the owl was available for detection (i.e.,
not in its burrow). If the person in the parked vehicle
observed the owl entering a nest burrow prior to and not
leaving it during a trial, that owl was considered unavailable
for detection by the surveyors; all other owls were considered
available for detection, although the visibility of those owls to
surveyors in the moving vehicle were expected to vary due to
environmental conditions such as perch locations and vege-
tation cover. Thus, if the person in the parked vehicle
observed an owl aboveground that moved behind a barrier
(e.g., dense vegetation), that owl was still considered avail-
able for detection. The observer and driver of the moving
vehicle did not know the location of the nest burrow prior to
a trial. We surveyed only owls with locations that were
known by the person in the parked vehicle. To avoid prob-
lems with overestimating detection due to observers and
drivers anticipating the presence of an owl based on the
presence of the parked car, we also conducted trials on
owls that were not available for detection (e.g., in burrows).
Thus, the presence of a parked car was not a reliable cue that
an owl was available for detection. We excluded data from
these mock-trials from analyses of bias in visibility.
To reduce potential variation in our ability to detect an owl

during a trial due to differences in fields of view among types
of vehicles, we used the samemake andmodel (Ford Escape),
and kept the side windows up. This vehicle afforded good
forward and lateral visibility from the driver’s and front
passenger’s seats.
We recorded whether the observer or driver in the survey

vehicle saw an owl during each trial.When we saw an owl, we
stopped the survey vehicle and recorded data on factors that
we believed could affect the visibility of an owl from the
vehicle given that it was available for detection. To reduce
potential problems associated with variability in continuous
predictor variables, we measured some factors according to
broad categories. We recorded the number of owls (1 or 2)
present that were�3 m apart, time, type of water conveyance
structure closest to the owl (earthen or cement-lined), and
percent vegetation cover (0%, 1%–25%, 26%–50%, 51%–
75%, or 76%–100%) within a 308 horizontal field of view
from where the surveyors first detected the owl (centered on
the detected owl). We also recorded if we detected the owl in
flight (i.e., flushed or flying) or on a perch (burrow entrance,
bare ground, cement liner, fence post or stake, pipe, utility
pole, utility or fence wire, farm equipment, irrigation head
gate, debris pile, in or on vegetation, in vegetated agricultural
field, or hay bales). We recorded the average wind speed
(<20 km/hr or >20 km/hr) for 1 min immediately after
detection using a Kestrel 3000 Pocket Weather Monitor
(Nielsen-Kellerman, Boothwyn, PA) and percent of the
sky obstructed by clouds (0%, 1%–25%, 26%–50%, 51%–
75, or 76–100%) because others have reported that high wind

speeds (>20 km/hr) and cloud cover influence detection of
owls (Shyry et al. 2001, Conway et al. 2008).We counted the
number of owls present because we anticipated that 2 owls
would be more visible than a single owl. We distinguished
owls first observed on perches from those detected when they
flushed or flew because we anticipated that movement would
increase visibility. If an owl was undetected by the surveyors,
the person in the parked vehicle recorded the above infor-
mation from where that person first detected the owl during
the trial after the 5–10 min continuous observation period.

Correcting for Visibility and Availability Biases

We used only the data from owls that were available for
detection to develop visibility models to avoid the confound-
ing affect of availability and because we did not design our
visibility trials to account for variation in availability. To
avoid problems with small sample sizes in each perch
category (Table 1), we created the following reduced cate-
gories: 1) perched at burrow entrance, 2) flushed or flying,
3) perched in agricultural field, 4) perched on bare ground,
including cement liner, 5) perched on hay bales, 6) perched
on or in nonagricultural vegetation, and 7) perched on post,
pipe, pole, wire, irrigation head gate, debris pile, or farm
equipment. Although the sample size was small (n ¼ 11), we
chose to keep agricultural field as a separate perch type given
its high prevalence across the landscape, close proximity to
most nest burrows, and frequent use by owls in this system
(Rosenberg and Haley 2004).
We fit a candidate set of 41 logistic regression models to

our visibility data, where each model represented an alterna-
tive a priori hypothesis.Wemodeled PV of owls as a binomial
response (i.e., seen or missed) to either a single, additive, or
interactive affect of the discrete and categorical predictor
variables. We based the structure of our models on biologi-
cally meaningful relationships that we derived from natural
history records of owls (Coulombe 1971, Martin 1973,
Rosenberg and Haley 2004, Conway et al. 2008). Models
that included time of day (hr þ min/60) used a second-
degree polynomial function of time because detections
have been reported to decline during midday in this region
(Coulombe 1971). We used Akaike’s Information Criterion
(AIC) to identify a reduced set of models (DAIC < 2.0),
used parsimony to select a single model from the competing
set (Akaike 1973, Lebreton et al. 1992, Burnham and
Anderson 2002), and considered this to be our best predictive
model.
We used the area under a receiver operating characteristic

(ROC) curve to assess how well the parameters from our best
logistic model predicted when owls were seen or missed
(Hanley and McNeil 1982, Heagerty et al. 2000). We did
this by generating predicted values for our ROC curve by
applying a leave-one-out k-fold cross validation with our best
model (Devijver and Kittler 1982). This validation approach
involved using a single observation from the original sample
as the validation data, and the remaining observations as the
training data. We also used the deviance/df from our best
model to assess how well it explained the observed variation
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in PV, where a model with deviance/df > 1 would suggest
over-dispersion (i.e., extra binomial variance).
Based on the concept of sampling weights, where a sample

unit’s weight is the inverse of its probability of being visible
(Lohr 1999), we used the results from our best model to
compute unbiased maximum likelihood estimates of PV

ðP̂ViÞ as a devisor to correct for visibility bias (Diefenbach
et al. 2007), such that

ûVi ¼
1

P̂Vi

¼ 1þ e�x0
i
~b�x0

i

P
xi=2

where x0i
~b is a logistic regression function ðboþ bix1i þ � � � þ

bp�1xp�1iÞ and x0i is the vector of covariates ðx1; . . . xpÞ that
significantly influence visibility of those owls i with those
environmental characteristics, and

P
xi is the empirically

derived variance-covariance matrix (Steinhorst and Samuel
1989).
Because our logistic visibility model is intended for apply-

ing to a census of an area rather than a sample of available
land units, the estimated variance of ûV is a reduced version
of the variance estimator of (Steinhorst and Samuel 1989),
such that

v̂arðûVÞ ¼
Xn
i¼1

1�ûVi

ûVi

 !

þ
X
j

X
j 0

bj � bj 0 � SðûVj ; ûVj 0 Þ
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where the 2 variance components relate to visibility error and
error associated with estimating ûV (Steinhorst and Samuel
1989), j indexes a group of owls i having a constant level of a
given environmental characteristic, bj ¼

P
i2jmi, wheremi is

the number of owls in the ith group, and Sðð1=ûVjÞ; ð1=ûVj 0 ÞÞ
is the empirically derived standard error (Steinhorst and
Samuel 1989).
We estimated availability bias separately because the prob-

ability of being available generally follows a different pattern
from the probability of being visible (Diefenbach et al. 2007).
To correct for availability bias, we used the mixed effects
linear equation by Manning (2011) as a devisor such that

ûAi ¼
1

P̂Ai

¼ 1

ðsinð2:13�0:03� temperatureÞÞ2

where temperature was measured in 8C. The estimated
variance of ûA is

v̂arðûAÞ ¼
Xn
i¼1

1�ûAi

ûAi

 !

þ
X
j

X
j 0

bj � bj 0 � SðûAj ; ûAj 0 Þ
 !

Visibility and availability corrected estimates of population
size ðN̂VAÞ are computed as

N̂VA ¼
Xn
i¼1

ni � ðûVi � ûAiÞ

(e.g., 8 owls observed with a P̂Vi of 0.5 and P̂Ai of 0.5 yields
an estimate of 32 owls). Given that ûV and ûA are indepen-
dent and their covariance is zero (Goodman 1960, Schreuder

Table 1. Breeding burrowing owl visibility survey results by independent
variable from the Imperial Valley, California, USA, 2007.

Variable

�1 Owla

Seen Missed Visibilityb

Number of owlsc

1 412 67 0.860
2 73 14 0.839

Time of day
0630–0729 19 4 0.826
0730–0829 47 12 0.797
0830–0929 51 15 0.773
0930–1029 65 12 0.844
1030–1129 57 4 0.934
1130–1229 35 4 0.897
1230–1329 15 0 1.000
1330–1429 24 2 0.923
1430–1529 46 6 0.885
1530–1629 48 5 0.906
1630–1729 38 4 0.905
1730–1829 34 5 0.872
1830–1929 6 2 0.750

Water conveyance structure
Cement-lined 187 37 0.835
Earthen 305 48 0.864

Wind speed (xkm/hr)
0 217 35 0.861
<20 22 6 0.786
>20 252 45 0.848

Cloud cover (%)
0 68 18 0.791
1-25 279 45 0.861
26-50 47 4 0.922
51-75 48 9 0.842
76-100 49 10 0.831

Vegetation cover (%)
0 22 5 0.815
1–25 217 28 0.886
26–50 203 32 0.864
51–75 41 17 0.707
76–100 8 4 0.667

Perch or flying
Flushed or flying 41 3 0.932
At burrow entrance 89 13 0.873
Debris pile 4 0 1.000
In agricultural field 5 6 0.455
In or on vegetationd 14 7 0.667
On bare ground 258 42 0.860
On cement liner 6 1 0.857
On farm equipment 3 1 0.750
On fence post 32 1 0.970
On hay bales 17 1 0.944
On head gate 9 1 0.900
On pipe 5 2 0.714
On utility pole 2 0 1.000
On utility wire 1 2 0.333

a �1 Owl detected in a breeding territory.
b Visibility ¼ (no. of owls seen) � (no. of owls seen þ no. of owls
missed).

c Number of owls �3 m apart.
d In or on vegetation other than agricultural crops.
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et al. 2004), the variance of N̂VA is

v̂arðN̂VAÞ ¼ ðN̂VA � ûV � ûAÞ2 �
v̂arðûVÞ

û
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V

þ v̂arðûAÞ

û
2

A

0
@

1
A

Validation
To gauge the performance of our modeled ûVs and validate
their use with estimates of ûA to produce reliable estimates of
N̂VA, we used a portion of our study area where abundance
was known and independent from that we used to develop
the visibility model. The validation site was representative of
the study area in terms of the agricultural activities, water
conveyance structures, vegetation cover, and other perches
found across the study area. We randomly selected a 6.5 km
length of irrigation system from a vector layer of all possible
6.5-km segments of irrigation drains and canals (5,385 km)
maintained by the Imperial Irrigation District (Imperial,
California) in the study area and counted all active burrows
that contained sign of owl use (e.g., regurgitated pellets,
feathers, nest lining, whitewash, footprints with an absence
of cobwebs, or an owl that retreated or flushed from a burrow;
Conway et al. 2008). We also captured 22 resident male owls
in this area with noose carpets, bal-chatris traps, Havahart
traps, and mist nets (Collister 1967, McClure 1984, Bloom
1987, Bloom et al. 2007; Federal Bird Marking and Salvage
permit 20431 and California Scientific Collector’s Permit
801176-02). Each owl was fitted with metal U.S. Geological
Survey and colored plastic, alphanumeric leg bands. We used
the apparent absence of brood patches to assign sex to each
banded owl, and verified that the male in each territory was
banded by revisiting the area 3 times during the subsequent
days when we anticipated that females would be incubating
eggs in the nest burrow. We used this information and that
from counting active nests to derive a true number of active
territories; we believe this was sufficient for obtaining true
abundance because no new owls or nests were located on the
third visit.

We completed 4 separate visibility survey occasions of owls
along this length from 0700 hours to 1100 hours between 2
April and 17 April 2007 with surveyors that were indepen-
dent from those who collected the data used to develop the
visibility model. Each visibility survey was conducted on a
different day by a different set of surveyors (driver and
passenger). We recorded the information required to apply
our best visibility model, and calculated ûVi and ûAi for each
group of owls i with the same environmental covariates. We
used these correction factors to compute N̂VA for each
survey, and compared the associated 90% confidence inter-
vals to the true number of active territories. We computed
statistics using R (R Version 2.11.1, www.r-project.org,
accessed 31 Mar 2008).

RESULTS

We collected data on 7 factors anticipated to influence
visibility while conducting vehicle-based surveys during
the pre-hatch stage of the breeding cycle at 567 randomly
selected active burrowing owl territories (Table 1). We ob-
served owls perching on bare ground at a higher frequency
than any other perch, but there was a marked decrease in the
use of this perch type in early afternoon followed by an
increase in the late afternoon (Fig. 1). The number of
observations at the burrow entrance also followed this pat-
tern, although at lower frequencies. We observed the major-
ity of owls at the burrow entrance or on bare ground away
from their nest. The visibility of 2 owls was similar to that of
1 (Table 1); thus, we did not include number of owls in our
visibility models.

Factors Influencing Visibility
There were 6 competing models in our candidate set that
explained the variation in visibility (Table 2), although the
most parsimonious of these hypothesized that visibility was a
second-degree polynomial function of time of day and a
function of perch type (Fig. 2). We considered this our
best model because the inclusion of vegetation type, cloud
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Figure 1. Number of burrowing owl detections on perches and flushed or flying during vehicle-based visual surveys in the pre-hatch stage of the breeding cycle
during daylight hours in the Imperial Valley, California, USA, 2007. Survey effort was balanced across all 1-hr periods. Sunrise and sunset were at 0600 and
1922, respectively.
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cover, wind speed, and type of water conveyance structure in
the nested competing models did not significantly improve
the fit of our best model (DAIC < 2.0), indicating little
support for these covariates in that they did not explain
additional variation in visibility beyond that accounted for
by time of day and perch type. This model was fairly accurate
(area under the ROC curve ¼ 0.70), with no evidence of
over-dispersion (deviance/df ¼ 0.68), indicating that the

independent variables in the model adequately accounted
for the observed variation in probabilities of visibility.
Parameter estimates indicated that visibility varied by type
of perch and throughout the day, with visibility unexpectedly
being highest in the afternoon (Table 3, Fig. 2). This was
opposite the pattern observed with respect to availability
(Manning 2011). We also included the empirically derived
covariance matrix of vector covariates used to develop the
visibility bias correction model (Appendix). The model pre-
dicted that owls observed flushing and flying or perched on
hay bales were highly visible (>0.93 and>0.88, respectively)
throughout the day, whereas visibility was lowest in agricul-
tural fields (<0.46) and nonagricultural vegetation (<0.72).

Model Estimates and Validation

We combined the unbiased maximum likelihood estimates
of ûV derived from our best visibility model with
ûAs estimated using the quadratic model by Manning
(2011) to compute visibility and availability corrected esti-
mates of N̂ from 4 independent surveys of 22 resident male
owls conducted between 0700 hours and 1100 hours in our
study area. The average of the raw survey counts ðx ¼ 17:75Þ
was biased 18% below the true number of territories, with
90% confidence intervals that did not include the true num-
ber. The average of the visibility and availability corrected
estimates ðx ¼ 22:1Þ was unbiased, and the 90% confidence
intervals overlapped the true number. All of the 4 corrected
estimates had 90% confidence intervals that overlapped the
true number of resident males (Fig. 3).

Table 2. Top 20 logistic regression models predicting the probability of a burrowing owl being visible during the pre-hatch stage of the breeding cycle in the
Imperial Valley, California, USA, 2007.Models are ranked from best to worst on the basis of the difference in Akaike’s InformationCriterion (DAIC) between a
model and that of the model with the lowest AIC, where AIC is based on �2log likelihood and the number of parameters (K) in the model.

Model K DAIC

Time þ time2 þ percha þ vegetation coverb þ cloud coverc 14 0.0
Time þ time2 þ perch þ cloud cover 11 0.0
Time þ time2 þ perch 9 0.3
Time þ time2 þ perch þ vegetation cover þ wind speedd 11 1.0
Time þ time2 þ perch þ water conveyance structuree 10 1.3
Perch þ vegetation cover þ cloud cover 12 1.7
Perch 7 2.1
Time þ time2 þ perch þ wind speed 11 2.4
Perch þ cloud cover 9 2.5
Perch þ water conveyance structure 8 2.5
Perch þ water conveyance structure þ cloud cover 10 3.0
Perch þ vegetation cover þ wind speed 11 3.1
Perch þ wind speed 9 4.9
Perch þ water conveyance structure þ wind speed 10 5.6
Time þ time2 þ vegetation cover 6 7.0
Time þ time2 þ vegetation cover þ cloud cover 8 7.2
Vegetation cover 4 7.3
Time þ time2 þ vegetation cover þ wind speed 8 8.0
Vegetation cover þ cloud cover 6 8.1
Time þ time2 þ vegetation cover þ water conveyance structure 7 8.8

a Flushed or flying, in agricultural field, on bare ground, on hay bales, on or in vegetation, or on post, pipe, pole, wire, irrigation head gate, debris pile, or farm
equipment.

b 0%, 1%–15%, 26%–50%, 51%–100%.
c 0%, 1%–50%, 51%–100%.
d 0 km/hr, <20 km/hr, or >20 km/hr.
e Earthen or cement-lined.
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Figure 2. Probability of a burrowing owl being visible as a function of time
of day and type of perch during vehicle-based visual surveys estimated by a
logistic regression model based on 567 diurnal observations in the pre-hatch
stage of the breeding cycle in Imperial Valley, California, USA, 2007.
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DISCUSSION

Our validated results demonstrated that jointly correcting for
burrowing owl visibility and availability can produce unbi-
ased estimates of population size. Burrowing owl visibility
during single, diurnal, vehicle-based, visual surveys in the
pre-hatch stage of the breeding cycle was determined pri-
marily by perch type and a second-degree polynomial func-
tion of time of day. Visibility peaked in the afternoon, which
was the opposite of that found for availability during the
same stage of the breeding cycle in our study area (Manning
2011). Although patterns of availability indicate that owls are
least available for detection in the afternoon, the limited
numbers that were available were more easily seen by observ-
ers. Thus, estimates from a single afternoon count will be
relatively precise, but negatively biased, whereas those from
morning and late afternoon will be less biased and less
precise.
Although there were competing models, the addition of

vegetation type, cloud cover, wind speed, and type of water
conveyance structure did not significantly improve the fit of
our best model (DAIC < 2.0), indicating that they did not
explain additional variation in visibility beyond that

explained by the model with only time of day and perch
type (Burnham and Anderson 2002, Arnold 2010). We were
surprised that cloud cover and wind speed did not improve
model fit because others have found them to be important in
estimating P in northern owl populations (Conway et al.
2008). One reason for why the addition of clouds and wind
did not significantly improve model fit among the nested
competing visibility models may be that they only influenced
the PA component of P. Alternatively, our field measure-
ments associated with these variables may have introduced
additional measurement error relative to that associated with
recording only time of day and type of perch. However, the
ROC curve with the k-fold cross validation predicted values
from our best model did show that time of day and perch type
alone performed fairly well at predicting whether an owl was
visible or not.
Ambient temperature has been reported to affect the de-

tection of owls in the northwestern United States, where
temperatures are considerably cooler (Conway et al. 2008).
We did not measure temperature because the results from a
pilot study suggested that the high temperatures in our study
area were not good predictors of detection, and perch selec-
tion in our system may be a function of thermoregulatory
needs (Coulombe 1971). Owls in the Imperial Valley perch
on the ground in the early morning, move to perches elevated
several meters above ground in late morning, and use either
the shade of their burrow entrance or cooling wind at the top
of a utility pole in the afternoon (Coulombe 1971). Although
we observed an increase of owls at nest entrances in the late
afternoon when temperatures were high, this coincided with
an unexpected increase in observations on bare ground,
which were not recorded concomitantly with observations
at nest entrances. This unexpected increase may have oc-
curred because we assigned small dirt clods (>7.5 cm in
diameter) that were frequently used by owls as sentry or
secondary perches along the embankments of irrigation
ditches as bare ground, but these may have functioned as
elevated perches. Another cause may be the increase in
activities by owls in late afternoon in preparation for crepus-
cular and nocturnal foraging. Under laboratory conditions,
temperature, and time of day have been shown to influence
owl activities (Coulombe 1971), and this suggests that effects
of temperature on visibility and availability may be con-
founded by time of day. Additionally, ambient temperature

Table 3. Parameter estimates for burrowing owl visibility model (Imperial Valley, California, USA, 2007).

Variable Estimate SE 95% CI

Intercepta �1.176 0.568 �2.289 to �0.063
Time 0.456 0.219 0.025–0.886
Time2 �0.015 0.013 �0.040 to 0.010
Perch type
Flushed or flying 1.816 1.058 �0.258 to 3.889
Perched in agricultural field �2.142 0.682 �3.478 to �0.805
Perched on bare ground �0.188 0.342 �0.858 to 0.483
Perched on hay bale(s) 0.939 1.074 �1.165 to 3.044
Perched on or in nonagricultural vegetation �1.335 0.558 �2.429 to �0.241
Perched on post, pipe, pole, wire, irrigation head gate, debris pile, or farm equipment 0.144 0.505 �0.845 to 1.133

a Intercept is the coefficient that coincides with the at burrow entrance perch type.
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Figure 3. Visibility corrected estimates and raw counts of burrowing owls
from a population of known size (dashed line) during vehicle-based visual
surveys in the pre-hatch stage of the breeding cycle in the Imperial Valley,
California, USA, 2007. The reference perch category was at burrow entrance.
Vertical bars are 90% confidence intervals.
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has been found to interact with wind speed (Conway et al.
2008, Manning 2011).
The external validation consistently demonstrated that our

model corrected for visibility and availability biases despite
using a validation dataset that was collected 2 weeks earlier
during the breeding cycle compared to that used for model
development. Although the stage of the breeding cycle has
been shown to affect detection probability of burrowing owls
(Conway et al. 2008), we did not observe fledglings through-
out the 1-month study, indicating that the data used to
develop and validate the model represented the early stages
of nest phenology (Coulombe 1971, Thomsen 1971,
Plumpton and Lutz 1993). Consequently, our validations
suggested that our model was robust to slight changes in
visibility and/or availability that may have occurred over the
2-week period. However, we caution against applying our
model to later stages of nesting phenology when availability
is likely to increase due to females and nestlings emerging
aboveground (Coulombe 1971, Thomsen 1971, Plumpton
and Lutz 1993).
Because probabilities of visibility described here and prob-

abilities of availability reported by Manning (2011) differ
throughout the day in the Imperial Valley and likely across
the southwest United States, surveying throughout the day
will produce biased estimates of population size in southwest
agroecosystems if both types of bias are unaccounted for. Our
validation showed that single uncorrected counts of burrow-
ing owls conducted prior to the afternoon in our system were
negatively biased by approximately 20%. Thomsen (1971)
reported that low availability of burrowing owls during mid-
afternoon surveys in northern California biased population
counts 90% below the known population size. Our joint bias
correction factors correct for visibility and availability biases
that occur during single diurnal counts conducted through-
out the day during the pre-hatch stage of the breeding cycle.
Thus, future burrowing owl population data collected under
similar sighting conditions throughout the day in the
Imperial Valley and like habitats across the southwest as
those used to develop our sightability model should provide
unbiased owl population estimates. However, as we did not
have independent data to validate our visibility and avail-
ability bias corrected estimates for times after 1,100, addi-
tional external validation should be completed for later hours
of the day when environmental conditions such as increased
temperature and wind speed may further affect owl detection
probabilities.

MANAGEMENT IMPLICATIONS

As burrowing owls increasingly occupy agricultural environ-
ments across their range in North America (Rich 1986,
Leptich 1994, DeSante et al. 2004), these areas will become
increasingly important for conservation and management of
this species. Because probabilities of visibility and availability
vary throughout the day and seasonally in the dense owl
population occupying the agricultural matrix of the Imperial
Valley, long-term monitoring that requires reliable estimates
of population size necessitate that survey counts in this
region be corrected for both types of bias. Our bias correction

factors (with the empirically derived covariance matrix of
vector covariates in Appendix) provide a method to correct
these biases using a single survey occasion that is relatively
affordable for long-term monitoring compared to other
methods that require multiple survey occasions (e.g., cap-
ture–recapture; Williams et al. 2002). This method corrects
both types of biases and provides a measure of precision that
can be incorporated into guidelines for local and range-wide
survey efforts that involve surveying the Imperial Valley and
other like habitats across the southwest. The efficacy of
applying these joint bias correction factors to other areas
can easily be assessed by replicating our validation approach
where owl abundance is known.
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APPENDIX. COVARIANCE MATRIX OF VECTOR COVARIATES

Empirically derived covariance matrix of vector covariates ð
P

xiÞ used to develop a visibility bias correction model with
unbiased maximum likelihood estimates of visibility for burrowing owls (Imperial Valley, California, USA, 2007).

Parameter Intercept Time Time2
Flushed
or flying

Perched in
agricultural

field

Perched
on bare
ground

Perched
on hay
bale(s)

Perched on or in
nonagricultural

vegetation
Perched on

post or othera

Intercepta 0.323 �0.288 0.023 �0.023 0.020 �0.020 �0.063 �0.033 0.005
Time �0.288 0.048 �0.004 �0.013 �0.019 �0.013 �0.006 �0.008 �0.017
Time2 0.023 �0.004 0.000 0.001 0.001 0.001 0.000 0.000 0.001
Flushed or flying �0.023 �0.013 0.001 1.119 0.092 0.092 0.091 0.088 0.093
Perched in agricultural field 0.020 �0.019 0.001 0.092 0.465 0.092 0.091 0.091 0.093
Perched on bare ground �0.020 �0.013 0.001 0.092 0.092 0.117 0.091 0.090 0.092
Perched on hay bale(s) �0.063 �0.006 0.000 0.091 0.091 0.091 1.153 0.089 0.091
Perched on or in
nonagricultural vegetation

�0.033 �0.008 0.000 0.088 0.091 0.090 0.089 0.311 0.089

Perched on post or otherb 0.005 �0.017 0.001 0.093 0.093 0.092 0.091 0.089 0.255

a Intercept is the coefficient that coincides with the at burrow entrance perch type.
b Pipe, pole, wire, irrigation head gate, debris pile, or farm equipment.
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