Tidal Marsh Vulnerability to SLR Manager Needs

- Understand localized SLR rates (i.e. SF Bay regions vs. Tomales Bay)
- need accurate models depicting water levels over time under various conditions;
- Know tidal marsh vulnerability to SLR given current topography and current sediment loading rates in respective watersheds
- i.e. Storm events at high-tides, influence of levee structures, etc.
- Determine vulnerability of future marsh in subsided baylands
- Can we expect the marsh to form in our anticipated 20-year timeframe and will it keep pace with sea level rise?
- Understand potential for marshes to migrate inland in response to SLR
- taking into consideration topographic and infrastructure
 constraints
- Understanding of what factors will be most important in the ability of coastal marshes to mitigate sea level rise
- i.e. Will organic matter accumulation be more important than sedimentation in allowing marshes to respond to increases in sea level?
- Understanding the fate of the habitat itself, and also the fate of all the plant and wildlife species utilizing it
- Need to have information on local trends on climate, hydrology, and geology
- to be able to make informed management decisions

Clapper Rail

Salt Marsh Harvest Mouse

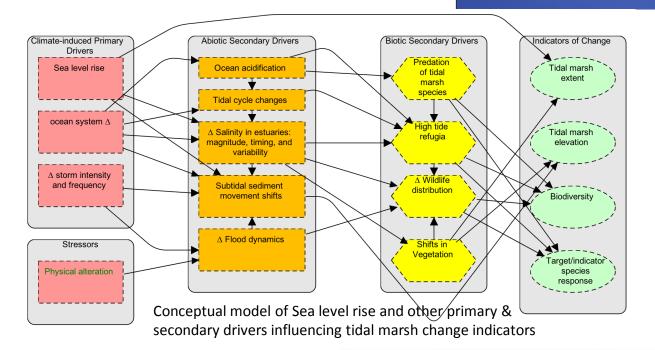
SF Bay Tidal Marsh

Urgency for Vulnerability Assessments

- Need to complete vulnerability assessments as soon as nossible
- BUT important to have the best information available to inform these efforts!
- Urgency for having information on localized trends in climate, hydrology, and geology
- The sooner the better! We are moving forward now.
- Yesterday has passed already, so, sometime in the near future!

San Francisco Bay Joint Venture

Manager Concerns, Needs & Information Gaps regarding Sea Level Rise (SLR) Impacts on Estuaries


JV SLR Concerns

- PAST Fate of restoration investment
- PRESENT Vulnerability assessments & adaptation strategies for target ecosystems & species
- FUTURE Climate-smart restoration & management

Impacts of Most Concern

- Conversion of habitats (tidal marsh to mudflat or subtidal) and related loss of restoration investment
- Primarily losing mid and upper marsh zones to lower marsh and open Bay water habitat.
- Changes in salinity regime & related impacts on fauna & flora
- Associated storm events as they are least predictable and can occur far more quickly than actual sea level rise

San Francisco Bay Joint Venture Active Habitat Projects 2011 February Edition Project Locations Windows, Mary Windows, Mary Windows, Mary Project Locations Windows, Mary Windows, Ma

SLR Vulnerability Analysis Main Concerns

- Information will be used to make decisions that are not truly reflective of changes that might occur in our region
- Mainly that the science is not advanced enough to accurately predict what will happen. We don't really know:
- how much sediment is out there
- when and how fast sea level will rise
 The benefit of unrefined maps is outweighed by the alarm they
- Whether we'll have enough quantity and quality of refugia habitat to provide for the species entrusted by the public to our agency
- Results will tell us that there isn't much we can actively do and our previous work is lost

Priority Research Needs

- SLR impacts on habitat evolution- can passive marsh accretion keep up with SLR?
- Vulnerability assessments for tidal marsh ecosystems and key indicator species
- Site specific rate or SLR & sediment availability
- High tide refugia distribution & associated predation risk
- Projected storm severity & frequency in conjunction with SLR impacts on key species
- Effects of changing salinity & ocean estuary linkages

Main Information Gaps

- Site specific height and rate of sea level rise and sediment availability
- No good current modeling for potential changes along the California coast
- Perceived gaps in the exchange of information among those organizations (scientists!) collecting, analyzing, and conveying the info

Priority Monitoring Needs

- SLR in conjunction with salinity Δ, storm frequency
- Tidal water & extreme event surface elevations & rates of Δ at local scale
- Impacts on marsh fauna, flora, special status species
- Indicators developed via SFEP-DWR effort